Structure Regularization for Structured Prediction

Xu SUN
xusun@pku.edu.cn

Peking University
Structured prediction

Structured prediction methods are useful for many areas
- Natural language processing (NLP)
- Vision recognition
- Signal processing
- Bioinformatics
- Speech recognition
- Etc.
For example, many natural language processing (NLP) tasks are **structured prediction** tasks

- Parsing
- SMT
- POS tagging
- Word segmentation
- Named entity recognition
- Chunking
Given a structured prediction task, is the scale of structure matters?

He reckons the current account deficit will narrow to only #1.8 billion in September.

Structured prediction model (e.g., CRF, HMM, MEMM, or perceptron)
Given a structured prediction task, is the scale of structure matters?

He reckons the current account deficit will narrow to only # 1.8 billion in September.
Given a structured prediction task, is the scale of structure matters?

How about this scale?

structured prediction model (e.g., CRF, HMM, MEMM, or perceptron)
Basic question

- **Sub-question-1**
 - Given a structured prediction task, is the scale of structure matters?

- **Sub-question-2:**
 - If it matters, which scale is the best?
 - E.g., most of the tasks are based on sentence level, but is it really a good choice?

- **Sub-question-3:**
 - How to find the best scale of complexity in practice?
Current research trend → using more and more complex structures
- E.g., long distance features, high order dependencies, global information
- This is helpful to some tasks, but also helpless (even harmful) to some other tasks, Why??

Our study
- Theoretical analysis:
 - Complex structures is not always good
 - → it can be harmful to generalization ability
 - → we need to find an optimal scale of complexity
- Proposed a solution: structure regularization (SR)
Theoretical analysis: Overfitting risk

Theorem 4 (Generalization vs. structure regularization) Let the structured prediction objective function of G be penalized by structure regularization with factor $\alpha \in [1, n]$ and L_2 weight regularization with factor λ, and the penalized function has a minimizer f:

$$f = \arg\min_{g \in \mathcal{F}} R_{\alpha, \lambda}(g) = \arg\min_{g \in \mathcal{F}} \left(\frac{1}{mn} \sum_{j=1}^{m\alpha} \mathcal{L}_\tau(g, z'_j) + \frac{\lambda}{2} \|g\|_2^2 \right)$$ \hspace{1cm} (8)

Assume the point-wise loss ℓ_τ is convex and differentiable, and is bounded by $\ell_\tau(f, z, k) \leq \gamma$. Assume $f(x, k)$ is ρ-admissible. Let a local feature value be bounded by v such that $x_{(k, q)} \leq v$ for $q \in \{1, \ldots, d\}$. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the random draw of the training set S, the generalization risk $R(f)$ is bounded by

$$R(f) \leq R_e(f) + \frac{2d\tau^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \left(\frac{(4m - 2)d\tau^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \gamma \right) \sqrt{\frac{\ln \delta^{-1}}{2m}}$$ \hspace{1cm} (9)

- **Expected risk** (risk on test data)
- **Empirical risk** (risk on training data)
- **Overfitting risk** (risk of overfitting from training data to test data)
Theoretical analysis: Overfitting risk

Theorem 4 (Generalization vs. structure regularization) Let the structured prediction objective function of G be penalized by structure regularization with factor $\alpha \in [1, n]$ and L_2 weight regularization with factor λ, and the penalized function has a minimizer f:

$$
f = \arg\min_{g \in \mathcal{F}} R_{\alpha, \lambda}(g) = \arg\min_{g \in \mathcal{F}} \left(\frac{1}{mn} \sum_{j=1}^{m\alpha} \mathcal{L}_\tau(g, z'_j) + \frac{\lambda}{2} \|g\|_2^2 \right) \quad (8)
$$

Assume the point-wise loss ℓ_τ is convex and differentiable, and is bounded by $\ell_\tau(f, z, k) \leq \gamma$. Assume $f(x, k)$ is ρ-admissible. Let a local feature value be bounded by v such that $x_{(k,q)} \leq v$ for $q \in \{1, \ldots, d\}$. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the random draw of the training set S, the generalization risk $R(f)$ is bounded by

$$
R(f) \leq R_e(f) + \frac{2d^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \left(\frac{(4m - 2)d^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \gamma \right) \sqrt{\frac{\ln \delta^{-1}}{2m}} \quad (9)
$$

Complexity of structure (nodes of a training sample with structured dependencies)

\Rightarrow Complex structure leads to higher overfitting risk
Theoretical analysis: Overfitting risk

Theorem 4 (Generalization vs. structure regularization) Let the structured prediction objective function of G be penalized by structure regularization with factor $\alpha \in [1, n]$ and L_2 weight regularization with factor λ, and the penalized function has a minimizer f:

$$f = \arg\min_{g \in F} R_{\alpha, \lambda}(g) = \arg\min_{g \in F} \left(\frac{1}{mn} \sum_{j=1}^{m\alpha} \mathcal{L}_\tau(g, z'_j) + \frac{\lambda}{2} \|g\|_2^2 \right)$$

Assume the point-wise loss ℓ_τ is convex and differentiable, and is bounded by $\ell_\tau(f, z, k) \leq \gamma$. Assume $f(x, k)$ is ρ-admissible. Let a local feature value be bounded by v such that $x_{(k,q)} \leq v$ for $q \in \{1, \ldots, d\}$. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the random draw of the training set S, the generalization risk $R(f)$ is bounded by

$$R(f) \leq R_e(f) + \frac{2d\tau^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \left(\frac{(4m - 2)d\tau^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \gamma \right) \sqrt{\frac{\ln \delta^{-1}}{2m}}$$

Strength of structure regularization (strength of decomposition)

\rightarrow Stronger SR leads to reduction of overfitting risk
Theoretical analysis: Overfitting risk

Theorem 4 (Generalization vs. structure regularization) Let the structured prediction objective function of G be penalized by structure regularization with factor $\alpha \in [1, n]$ and L_2 weight regularization with factor λ, and the penalized function has a minimizer f:

$$f = \arg\min_{g \in \mathcal{F}} R_{\alpha, \lambda}(g) = \arg\min_{g \in \mathcal{F}} \left(\frac{1}{mn} \sum_{j=1}^{m\alpha} \mathcal{L}_\tau(g, z'_j) + \frac{\lambda}{2} ||g||_2^2 \right) \quad (8)$$

Assume the point-wise loss ℓ_τ is convex and differentiable, and is bounded by $\ell_\tau(f, z, k) \leq \gamma$. Assume $f(x, k)$ is ρ-admissible. Let a local feature value be bounded by v such that $x_{(k, q)} \leq v$ for $q \in \{1, \ldots, d\}$. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the random draw of the training set S, the generalization risk $R(f)$ is bounded by

$$R(f) \leq R_e(f) + \frac{2d\tau^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \left(\frac{(4m - 2)d\tau^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \gamma \right) \sqrt{\frac{\ln \delta^{-1}}{2m}} \quad (9)$$

Number of training samples

→ More training samples leads to reduction of overfitting risk
Theoretical analysis: Overfitting risk

Theorem 4 (Generalization vs. structure regularization) Let the structured prediction objective function of G be penalized by structure regularization with factor $\alpha \in [1, n]$ and L_2 weight regularization with factor λ, and the penalized function has a minimizer f:

$$f = \arg\min_{g \in \mathcal{F}} R_{\alpha, \lambda}(g) = \arg\min_{g \in \mathcal{F}} \left(\frac{1}{mn} \sum_{j=1}^{m\alpha} \mathcal{L}_\tau(g, z'_j) + \frac{\lambda}{2} \|g\|_2^2 \right)$$ \hspace{1cm} (8)

Assume the point-wise loss ℓ_τ is convex and differentiable, and is bounded by $\ell_\tau(f, z, k) \leq \gamma$. Assume $f(x, k)$ is ρ-admissible. Let a local feature value be bounded by v such that $x_{(k, q)} \leq v$ for $q \in \{1, \ldots, d\}$. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the random draw of the training set S, the generalization risk $R(f)$ is bounded by

$$R(f) \leq R_e(f) + \frac{2d\tau^2 \rho^2 v^2 n^2}{\lambda \alpha} + \left(\frac{(4m - 2)d\tau^2 \rho^2 v^2 n^2}{\lambda \alpha} + \gamma \right) \sqrt{\frac{\ln \delta^{-1}}{2m}}$$ \hspace{1cm} (9)

✓ **Conclusions from our analysis:**

1. **Complex structure** \rightarrow low empirical risk & high overfitting risk
2. **Simple structure** \rightarrow high empirical risk & low overfitting risk
3. Need a balanced complexity of structures
Theoretical analysis: Overfitting risk

Theorem 4 (Generalization vs. structure regularization) Let the structured prediction objective function of G be penalized by structure regularization with factor $\alpha \in [1, n]$ and L_2 weight regularization with factor λ, and the penalized function has a minimizer f:

$$
\begin{align*}
 f &= \arg\min_{g \in \mathcal{F}} R_{\alpha, \lambda}(g) = \arg\min_{g \in \mathcal{F}} \left(\frac{1}{mn} \sum_{j=1}^{m\alpha} \mathcal{L}(g, z'_j) + \frac{\lambda}{2} \|g\|_2^2 \right) \\
 \text{Assume the point-wise loss } \mathcal{L} \text{ is convex and differentiable, and is bounded by } \mathcal{L}(f, z, k) \leq \gamma. \text{ Assume } f(x, k) \text{ is } \rho \text{-admissible. Let a local feature value be bounded by } v \text{ such that } x_{(k, q)} \leq v \text{ for } q \in \{1, \ldots, d\}. \text{ Then, for any } \delta \in (0, 1), \text{ with probability at least } 1 - \delta \text{ over the random draw of the training set } S, \text{ the generalization risk } R(f) \text{ is bounded by}
\end{align*}
$$

$$
R(f) \leq R_e(f) + \frac{2d\tau^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \left(\frac{(4m - 2)d\tau^2 \rho^2 v^2 n^2}{m\lambda\alpha} + \gamma \right) \sqrt{\frac{\ln \delta^{-1}}{2m}}
$$

- **In other words, more intuitively:**
 1. Too complex structure \rightarrow high accuracy on training + very easy to overfit \rightarrow low accuracy on testing
 2. Too simple structure \rightarrow very low accuracy on training + not easy to overfit \rightarrow low accuracy on testing

Proper structure \rightarrow good accuracy on training + not easy to overfit \rightarrow high accuracy on testing
Theoretical analysis: Overfitting risk

Theorem 4 (Generalization vs. structure regularization) Let the structured prediction objective function of G be penalized by structure regularization with factor $\alpha \in [1, n]$ and L_2 weight regularization with factor λ, and the penalized function has a minimizer f:

$$ f = \arg \min_{g \in \mathcal{F}} R_{\alpha, \lambda}(g) = \arg \min_{g \in \mathcal{F}} \left(\frac{1}{mn} \sum_{j=1}^{m\alpha} \mathcal{L}_\tau(g, z'_j) + \frac{\lambda}{2} \|g\|_2^2 \right) $$

(8)

Assume the point-wise loss ℓ_τ is convex and differentiable, and is bounded by $\ell_\tau(f, z, k) \leq \gamma$. Assume $f(x, k)$ is ρ-admissible. Let a local feature value be bounded by v such that $x_{(k,q)} \leq v$ for $q \in \{1, \ldots, d\}$. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the random draw of the training set S, the generalization risk $R(f)$ is bounded by

$$ R(f) \leq R_e(f) + \frac{2d\tau^2 \rho^2 v^2 n^2}{m\lambda \alpha} + \left(\frac{(4m - 2)d\tau^2 \rho^2 v^2 n^2}{m\lambda \alpha} + \gamma \right) \sqrt{\frac{\ln \delta^{-1}}{2m}} $$

(9)

1. Simple structure \rightarrow low overfitting risk & high empirical risk
2. Complex structure \rightarrow high overfitting risk & low empirical risk
3. Need a balanced complexity of structures

Some intuition in the proof (as in the full version paper):
1) The decomposition can improve **stability**
2) Better stability leads to better **generalization** (less overfitting)
Theoretical analysis: Learning speed

Proposition 5 (Convergence rates vs. structure regularization) With the aforementioned assumptions, let the SGD training have a learning rate defined as \(\eta = \frac{c \epsilon \beta \alpha^2}{q \kappa^2 n^2} \), where \(\epsilon > 0 \) is a convergence tolerance value and \(\beta \in (0, 1] \). Let \(t \) be an integer satisfying

\[
 t \geq \frac{q \kappa^2 n^2 \log (qa_0/\epsilon)}{\epsilon \beta c^2 \alpha^2} \tag{15}
\]

where \(n \) and \(\alpha \in [1, n] \) is like before, and \(a_0 \) is the initial distance which depends on the initialization of the weights \(w_0 \) and the minimizer \(w^* \), i.e., \(a_0 = ||w_0 - w^*||^2 \). Then, after \(t \) updates of \(w \) it converges to \(\mathbb{E}[g(w_t) - g(w^*)] \leq \epsilon \).

- SR also with faster speed
 (a by-product of simpler structures)

- ✔️ using structure regularization can quadratically accelerate the convergence rate
- Complex structures (high complexity)

- Simple structures (low complexity)
We propose **structure regularization (SR)** to find good complexity

- Simply split the structures!
- Can (almost) be seen as a preprocessing step of the training data
Will the split causes feature loss? – loss of long distance features?

No loss of any (long distance) features

→ We can first extract features, then split the structures
→ Or, by simply copying observations to mini-samples, i.e., the split is only on tag-structures, like this:
Is structure regularization also required for test data?

No, no use of SR for testing data (in current implementation & experiments)

→ Like other regularization methods, SR is only for the training

→ i.e., No SR on the test stage (no decomposition of test samples)!
Structure regularization

Structure & weight regularization

\[R_{\alpha, \lambda}(G_S) \triangleq R_{\alpha}(G_S) + N_{\lambda}(G_S) \]

Algorithm 1 Training with structure regularization

1: **Input**: model weights \(w \), training set \(S \), structure regularization strength \(\alpha \)
2: **repeat**
3: \(S' \leftarrow \emptyset \)
4: **for** \(i = 1 \rightarrow m \) **do**
5: \(\text{Randomly decompose } z_i \in S \text{ into mini-samples } N_{\alpha}(z_i) = \{z_{i,1}, \ldots, z_{i,\alpha}\} \)
6: \(S' \leftarrow S' \cup N_{\alpha}(z_i) \)
7: **end for**
8: **for** \(i = 1 \rightarrow |S'| \) **do**
9: \(\text{Sample } z' \text{ uniformly at random from } S', \text{ with gradient } \nabla g_{z'}(w) \)
10: \(w \leftarrow w - \eta \nabla g_{z'}(w) \)
11: **end for**
12: **until** Convergence
13: **return** \(w \)

The implementation is very simple
Some advantages

- If the original obj. function is convex, can still keep the convexity of the objective function

- No conflict with the weight regularization
 - E.g., L2, and/or L1 regularization

- General purpose and model-independent (because act like a preprocessing step)
 - E.g., can be used for different types of models, including CRFs, perceptrons, & neural networks
State-of-the-art scores on competitive tasks

Experiments-1: accuracy

![Graphs showing accuracy and F-score for POS-Tagging, Bio-NER, Word-Seg, and Act-Recog tasks using CRF and Perc models.]
Experiments-2: Learning speed

- Also with faster speed
 (a by-product of simpler structures)
Question: Is structure complexity matters in structured prediction?

Theoretical analysis to the question

1) Yes it matters
2) High complexity of structures \rightarrow high overfitting risk
3) Low complexity \rightarrow high empirical risk
4) We need to find an optimal complexity of structures

Proposed a solution

- Split the original structure to find the optimal complexity
- Better accuracies in real tasks, & faster (a by-product)

This work is published at NIPS 2014:
Thanks for your attention!

Plz email xusun@pku.edu.cn if any question.

Source code is available upon request.