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Abstract—Personalized activity recognition usually faces the
problem of data sparseness. We aim at improving accuracy of
personalized activity recognition by incorporating the informa-
tion from other persons. We propose a new online multi-task
learning method for personalized activity recognition. The pro-
posed online multi-task learning method automatically learns
the “transfer-factors” (similarities) among different tasks (i.e.,
among different persons in our case). Experiments demonstrate
that the proposed method significantly outperforms existing
methods. The novelty of this paper is twofold: (1) A new multi-
task learning framework, which can naturally learn similarities
among tasks; (2) To our knowledge, this is the first study of
large-scale personalized activity recognition.

I. INTRODUCTION

Although there was a considerable literature on sensor

based activity recognition, most of the prior work discussed

activity recognition in predefined limited environments [1],

[2], [3]. For example, most of the prior work assumed the

beginning and ending time(s) of each activity are known

beforehand, and the constructed recognition system only

need to perform simple classifications of activities [1], [2],

[3]. However, this is not the case for real-life activity

sequences, in which the boundaries of the activities are

unknown beforehand [4].

More importantly, to the best of our knowledge, there is

no previous work that systematically studied personalized

activity recognition. Because of the difficulty of collecting

training data for activity recognition, most of the prior

work simply merge all personal data for training. We will

show in our experiments that simply merging the per-

sonal data for training an activity recognizer will result in

weak performance. Due to the fact that different persons

usually have very different activity patterns, it is natural

to construct personalized activity recognizers (for different

persons). However, the new problem is the data sparseness

of personalized activity recognition, because usually each

person only has very limited amount of labeled training data.

To realize personalized learning in activity recognition,

we exploit multi-task learning where each task corresponds

to a specific person in activity recognition. We will propose

an online multi-task learning method for personalized and
continuous activity recognition.

Table I
PRIOR ACCELEROMETER-BASED ACTIVITY RECOGNITION STUDIES.

#Persons Models Continuous Personalize
Bao [1] 20 DTs × Limited
Ravi [3] 2 DTs, SVMs × ×
Pärkkä [2] 16 DTs × ×
Huynh [5] 1 Bayesian LTM

√ ×
Sun [6] ≤ 20 CRFs, LCRFs

√ ×
This Work 20 Multi-Task Learner

√ √

II. RELATED WORK AND MOTIVATIONS

A. Activity Recognition

Most of the prior work on activity recognition treated

the task as a single-label classification problem [1], [2],

[3]. Given a sequence of sensor signals, the activity recog-

nition system predicts a single label (representing a type

of activity) for the whole sequence. Ravi et al. [3] used

decision trees (DTs), support vector machines (SVMs) and

K-nearest neighbors (KNNs) models for classification. Bao

and Intille [1] and Pärkkä et al. [2] used decision trees

for classification. A few other works treated the task as a

structured classification problem. Huynh et al. [5] tried to

discover latent activity patterns by using a Bayesian latent

topic model (Bayesian LTM). Most recently, Sun et al.
[6], [4] used conditional random fields (CRFs) and latent

conditional random fields (LCRFs) for activity recognition.

To our knowledge, there is only very limited work on the

study of personalized activity recognition. A major reason

is that most of the previous studies contain only a few par-

ticipants. The limited number of participants is inadequate

for a reliable study of personalized activity recognition. For

example, in Ravi et al. [3], the data was collected from two

persons. In Huynh et al. [5], the data was collected from only

one person. In Pärkkä et al. [2], the data was collected from

16 persons. Because of the difficulty of collecting training

data, most of the prior work simply merge all personalized

data for training. Personalized activity recognition and how

to solve data sparseness in personalized activity recognition

were not adequately studied. Table I summarizes prior work

on activity recognition.
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B. Conditional Random Fields

Conditional random fields (CRFs) are very popular mod-

els for structured classification [7]. Assuming a feature

function that maps a pair of observation sequence x and label

sequence y to a global feature vector f , the probability of

a label sequence y conditioned on the observation sequence

x is modeled as follows [7]:

P (y|x,w) =
exp

[
w�f(y,x)

]
∑
∀y′ exp

[
w�f(y′,x)

] , (1)

where w is a parameter vector.

Given a training set consisting of n labeled sequences,

(xi,yi), for i = 1 . . . n, parameter estimation is performed

by maximizing an objective function. For simplicity, we de-

note logP (yi|xi,w) as �(i,w). The final objective function

is as follows:

L(w) =

n∑
i=1

�(i,w)− ||w||
2

2σ2
. (2)

C. Stochastic Gradient Descent

To speed up the training, people turn to online training

methods. A representative online training method is the

stochastic gradient descent (SGD) [8]. Suppose Ŝ is a ran-

domly drawn subset of the full training set S , the stochastic

objective function is then given by

Lstoch(w, Ŝ) =
∑
i∈S

�(i,w)− |Ŝ||S|
||w||2
2σ2

.

The extreme case is a batch size of 1, and it gives the

maximum frequency of updates, which we adopt in this

work. In this case, |Ŝ| = 1 and |S| = n (suppose the full

training set contains n samples). In this case, we have

Lstoch(w, Ŝ) = �(i,w)− 1

n

||w||2
2σ2

, (3)

where Ŝ = {i}. The model parameters are updated in such

a way:

wk+1 = wk + γk∇wk
Lstoch(w, Ŝ), (4)

where k is the update counter, γk is the learning rate [6],

[4].

D. Multi-Task Learning

There was quite limited study on systematically combin-

ing online learning with multi-task learning. The existing

multi-tasking learning methods are mainly focused on matrix

regularization (e.g., [9], [10]), and online learning is not

well studied in such settings. Two recent studies considered

online learning in multi-task setting [11], [12]. Our multi-

task learning proposal will be substantially different from

them. While Yang et al. [12] focused on multi-task fea-

ture selection and Agarwal et al. [11] focused on online

matrix regularization, our proposal relates to neither feature

selection nor matrix regularization. We will propose a tighter

combination of online learning and multi-task learning, with

a new objective function and a novel training method.

III. A NEW MULTI-TASK LEARNING FRAMEWORK

In this section, we introduce the multi-task learning

framework. For every positive integer q, we define Nq =
{1, . . . , q}. Let T be the number of tasks (number of persons

in activity recognition) which we want to simultaneously

learn. For each task t ∈ NT , there are n data examples

{(xt,i,yt,i) : i ∈ Nn} available. In practice, the number of

examples per task may vary but we have kept it constant

for simplicity of notation. We use D to denote the n × T
matrix whose t-th column is given by the vector dt of data

examples.

A. Model

Our goal is to learn the vectors w1, . . . ,wT from the data

D. For denotational simplicity, we assume that each of the

weight vectors is of the same size f (feature dimension),

and corresponds to the same ordering of features. We use

W to denote the f × T matrix whose t-th column is given

by the vector wt. We learn W by maximizing1 the objective

function,

Obj(W,D) � Likelihood(W,D)−R(W), (5)

where Likelihood(W,D) is the averaged likelihood on the

tasks, namely,

Likelihood(W,D) =
∑
t∈NT

L(wt,D), (6)

and L(wt,D) is defined as follows:

L(wt,D) �
∑

t′∈NT

[
αt,t′L(wt,dt′)

]
. (7)

αt,t′ is a real-valued transfer-factor between two tasks, with

αt,t′ = αt′,t (symmetric). Intuitively, a transfer-factor αt,t′

measures the similarity between the t-th task and the t′-th
task. For example, in activity recognition, αt,t′ estimates the

similarity of the activity patterns between the person t and

the person t′. L(wt,dt′) is defined as follows:

L(wt,dt′) �
∑
i∈Nn

logP (yt′,i|xt′,i,wt)

=
∑
i∈Nn

�t′(i,wt),
(8)

where P (·) is a prescribed probability function. In this paper,

we use the CRF probability function, Eq. (1). The second

step is just a simplified denotation by defining �t′(i,wt) �
logP (yt′,i|xt′,i,wt).

1Maximization is only for simplicity of presentation. Actually, we mini-
mize the − log of the objective function.
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Algorithm Learning with fixed transfer-factors (OMT-

F)

Input: W← 0,D,A∗

for t← 1 to T
for 1 to convergence
. for 1 to n
. . gt ← − 1

n∇wt

||wt||2
2σ2

t

. . for t′ ← 1 to T

. . . Draw i ∈ Nn uniformly at random

. . . gt ← gt +A∗t,t′∇wt�t′(i,wt)

. . wt ← wt + γgt

Output: ∀t, wt converges to w∗t ; i.e., W converges to

W∗.

Algorithm Learning with unknown transfer-factors

(OMT)

Input: W← 0,D,A← 0
for 1 to convergence
. W← OMT-F(W,D,A)
. for t← 1 to T
. . for t′ ← 1 to T
. . . Update At,t′ using Eq. (15) or Eq. (14)

Output: A empirically converges to Â. W converges

to Ŵ.

Figure 1. Online multi-task learning algorithms (using batch size of 1).
The derivation of 1

n
before the regularization term was explained in Eq.

(3).

Finally, R(W) is a regularization term for dealing with

overfitting. In this paper, we simply use L2 regularization:

R(W) =
∑
t∈NT

||wt||2
2σ2

t

. (9)

To summarize, our multi-task learning objective function

is as follows:

Obj(W,D) =
∑

t,t′∈NT

[
αt,t′

∑
i∈Nn

�t′(i,wt)
]
−

∑
t∈NT

||wt||2
2σ2

t

.

To simplify denotation, we introduce a T × T matrix A,

such that At,t′ � αt,t′ . We also introduce a T×T functional

matrix Φ, such that Φt,t′ � L(wt,dt′). Then, the objective

function can be compactly expressed as follows:

Obj(W,D) = tr(AΦ�)−
∑
t∈NT

||wt||2
2σ2

t

, (10)

where tr means trace. In the following content, we will first

discussion a simple case that the transfer-factor matrix A
is fixed. After that, we will focus on the case that A is

unknown.

B. Learning with Fixed Transfer-Factors

With fixed transfer-factors, the optimization problem is as

follows:

W∗ = argmax
W

[
tr(A∗Φ�)−

∑
t∈NT

||wt||2
2σ2

t

]
. (11)

It is clear to see that we can independently optimize wt and

wt′ when t �= t′. In other words, we can independently

optimize each column of W, and therefore derive the

optimal weight matrix W∗. For wt (i.e., the t’th column

of W), its optimal form is:

w∗t = argmax
wt

ψ(wt,D), (12)

where ψ(wt,D) has the form as follows:

ψ(wt,D) =
∑

t′∈NT

[
α∗t,t′L(wt,dt′)

]
− ||wt||2

2σ2
t

. (13)

This optimization problem is a cost-sensitive optimization

problem. We present a cost-sensitive online training algo-

rithm, called online multi-task learning with fixed transfer-
factors (OMT-F), for this optimization. The OMT-F algo-

rithm is shown in Figure 1.

Given certain conditions, we can theoretically show that

the parameters W produced by the OMT-F online learning

algorithm are convergent towards the maximum W∗ of Eq.

(10). For saving space, we omit the details of convergence

analysis. We can also see the convergence of the proposed

method in the section of experiments.

C. Learning with Unknown Transfer-factors

For many practical applications, the transfer-factors are

hidden variables that are unknown. To solve this problem,

we present a heuristic learning algorithm, called OMT,

to learn transfer-factors and model weights in alternating

optimization (see the bottom of Figure 1). Here, the OMT-

F algorithm is employed as a subroutine. In the beginning,

model weights W and transfer-factors A are initialized by

0 matrix. W is then optimized to Ŵ by using the OMT-F

algorithm, based on the fixed A. Then, in an alternative

way, A is updated based on the optimized weights Ŵ.

After that, W are optimized again based on updated (and

fixed) transfer-factors. This iterative process continues until

empirical convergence of A and W.

In updating transfer-factors A based on W, a natural idea

is to estimate a transfer-factor αt,t′ based on the similarity

between weight vectors, wt and wt. The similarity between

weight vectors can be calculated by using kernels, including

the popular Gaussian RBF and polynomial kernels. We can

define Gaussian RBF kernel to estimate similarity between

two tasks:

αt,t′ �
1

C
exp(−||wt −wt′ ||2

2σ2
), (14)
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Table II
FEATURES USED IN THE ACTIVITY RECOGNITION TASK. A× B MEANS

A CARTESIAN PRODUCT BETWEEN TWO SETS; i REPRESENTS THE

WINDOW INDEX; yi AND yi−1yi REPRESENTS CRF LABEL AND

LABEL-TRANSITION. SINCE THE SINGLE-AXIS BASED FEATURES ON

THE THREE AXES ARE EXTRACTED IN THE SAME WAY, FOR SIMPLICITY,
WE ONLY DESCRIBE THE FEATURES ON ONE AXIS. FOR MULTI-AXIS

BASED FEATURES, WE USE 1, 2, AND 3 TO INDEX/REPRESENT THE

THREE AXES.

Single-axis based features:
(1) Signal strength features: {si−2, si−1, si, si+1, si+2, si−1si,
sisi+1} ×{yi, yi−1yi}
(2) Mean feature: mi ×{yi, yi−1yi}
(3) Standard deviation feature: di ×{yi, yi−1yi}
(4) Energy feature: ei ×{yi, yi−1yi}

Multi-axis based features:
(1) Correlation features: {c1,2,i, c2,3,i, c1,3,i} ×{yi, yi−1yi}

where C is a real-valued constant for tuning the magnitude

of transfer-factors. Intuitively, a big C will result in “weak

multi-tasking” and a small C will make “strong multi-

tasking”. σ is used to control the variance of a Gaussian

RBF function. Alternatively, we can use polynomial kernel

(normalized) to estimate similarities between tasks:

αt,t′ �
1

C

〈wt,wt′〉d
||wt||d · ||wt′ ||d , (15)

where 〈wt,wt′〉 means inner product between the two

vectors (i.e., w�t wt′ ); d is the degree of the polynomial

kernel; ||wt||d · ||wt′ ||d is the normalizer; C is a real-value

constant for controlling the magnitude of transfer-factors.

Actually the normalized polynomial kernel is natural and

easy to understand. For simplicity, we typically set d = 1.

In preliminary experiments, we find the polynomial kernel

works better (more robust) than the RBF kernel. Hence, we

will focus on the polynomial kernel in the experiments.

D. Accelerated OMT Learning

The OMT learning algorithm can be further accelerated

using more frequent update of the transfer-factors, A. The

naive OMT learning algorithm waits for the convergence of

the model weights W (in the OMT-F step) before updating

the transfer-factors A. In practice, we can update transfer-

factors A before the convergence of the model weights W.

For example, we can update transfer-factors A after running

only one iteration of the OMT-F algorithm. This can bring a

much faster empirical convergence of the OMT learning. We

will adopt this accelerated version of the OMT learning for

experiments. In the experiment section, we will compare the

(accelerated) OMT method with a variety of strong baseline

methods.

IV. EXPERIMENTS ON ALKAN DATA

We use the ALKAN dataset [13] for experiments. This

dataset contains 2,061 sessions, with totally 3,899,155 sam-

ples (in a temporal sequence). The data was collected

Table III
RESULTS ON THE DATA OF 5 PERSONS, 10 PERSONS, AND 20 PERSONS.
OMT IS THE PROPOSED METHOD. SGD-Single IS THE PERSONALIZED

SGD TRAINING; SGD-Merged IS THE MERGED SGD TRAINING.

#Person = 5 Ov. Accuracy (St. Deviation)
SGD-Merged 57.65 (±1.06)
SGD-Single 68.19 (±0.19)
OMT, C=80 (prop.) 69.84 (±0.86)
#Person = 10 Ov. Accuracy (St. Deviation)
SGD-Merged 63.25 (±0.16)
SGD-Single 68.34 (±0.25)
OMT, C=40 (prop.) 72.80 (±0.61)
#Person = 20 Ov. Accuracy (St. Deviation)
SGD-Merged 62.53 (±1.12)
SGD-Single 62.46 (±0.56)
OMT (prop.) 63.90 (±0.40)

by iPod accelerometers with the sampling frequency of

20HZ. A sample contains 4 values: time stamp and triax-

ial singals. For example, {539.266(s), 0.091(g), -0.145(g),

-1.051(g)} 2. There are five kinds of activity labels:

act-0 means “walking/running”, act-1 means “on
elevator/escalator”, act-2 means “taking car/bus/train”,

act-3 means “standing/sitting/discussing/at-dinner”, and

act-4 means “other (more trivial) activities (e.g., dress-
ing)”.

We randomly selected 85% of samples for training, 5%

samples for tuning hyper-parameters (development data),

and the rest 10% samples for testing. Following [6], the

evaluation metric are sample-accuracy (%) (the number of

correctly predicted samples divided by the total number of

samples). We also considered other evaluation metrics, like

precision and recall, in preliminary experiments. However,

we found precision and recall tended to be misleading in

this task, because an activity segment is very long (typically

contains thousands of time-windows), and small difference

on the boundaries of segments can cause very different

precision and recall. On the other hand, the accuracy metric

is much more reliable in this scenario.

A. Feature Engineering

Following prior work in activity recognition [1], [2], [3],

[5], we use acceleration features, mean features, standard

deviation, energy, and correlation features (see Table II). We

denote the window index as i. The mean feature is simply

the averaged signal strength in a window: mi =
∑|w|

k=1 sk
|w| ,

where s1, s2, . . . are the signal magnitudes in a window. The

energy feature is defined as ei =
∑|w|

k=1 s2k
|w| . The deviation

feature is defined as di =

√
∑|w|

k=1(sk−mi)2

|w| , where the mi

is the mean value defined before. The correlation feature is

defined as c1,2,i =
covariance1,2,i

d1,id2,i
, where the d1,i and d2,i are

the deviation values on the i’th window of the axis-1 and the

2In the example, ‘g’ is the acceleration of gravity.
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Figure 2. Overall and personal accuracy curves of the different methods (5-person, 10-person, and 20-person, respectively). The overall accuracy curves
are used to compare the OMT method with baselines. The personal accuracy curves are used for showing the diversity and distribution of the performance
among persons.

axis-2, respectively. The covariance1,2,i is the covariance

value between the i’th windows of the axis-1 and the axis-

2. We defined correlation feature between other axis pairs

in the same manner.

B. Experimental Setting

Two baselines are adopted, including the SGD-Single

training for each single person (using only this person’s data

for training), and the SGD-Merged training (merging all the

training data of different persons to train a unified model).

We employed an L2 prior for all methods, by setting the

variance σ = 2. For the OMT method, its hyper-parameters

(i.e., C and d) are tuned by using development data. In

preliminary experiments, we find using d = 1 worked well.

For C, we test C = 5, 10, 20, 40, 80, 160 on development

data, and choose the optimal one. We will show detailed

values of C in experimental results.
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Figure 3. Convergence of the learned OMT transfer-factors between
personal data pairs. A curve (i, j) corresponds to αi,j between the persons
i and j (that is, the task-similarity between person i and j). For simplicity,
we omit the (i, j) information (because we only focus on the convergence
here). Similar tendencies were also observed on the 20-person data.

C. Results and Discussion

To study multi-task learning with different scales, we

perform experiments on 5-person, 10-person, and 20-person
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data in an incremental way (see Table III). As we can see,

the OMT method significantly outperformed baselines.

Note that the overall accuracies of 5-person, 10-person,

and 20-person datasets are not directly comparable to each

other, simply because the datasets are different. For example,

the 20-person dataset contains the newly-added 15 persons

(compared with the 5-person dataset), and the newly-added

15 persons may have more noisy data. Nevertheless, the

personal accuracies for specific persons are comparable

among different scales.

1) Overall and Personal Curves: In Figure 2, we show

the accuracy curves by varying the number of training

passes. From the overall curves, we can clearly see the

superiority of the OMT method over other methods in

different scales.

We can see the personal curves are very diversified,

and simply merging their data for unified SGD training is

frustrating. The OMT method is an ideal solution for this

diversified situation.

2) Convergence of Transfer-Factors: In Figure 3, we

show curves of the transfer-factors. As we can see, the

transfer-factors were convergent as the OMT learning went

on.

In principle, the proposed method should be able to learn

even negative transfer-factors among tasks (e.g., if task a
and task b have opposite patterns). However, in this dataset,

we did not observe negative similarities. We observed that

all transfer-factors were non-negative. This is also good

in another aspect (convex analysis): it indicates that the

objective function of multi-task learning will be convex and

its optimum will be unique.

V. CONCLUSIONS AND FUTURE WORK

We studied personalized activity recognition, and pro-

posed a new multi-task learning method, which can naturally

learn similarities among different tasks (persons). Exper-

iments demonstrated that personalized activity recognition

with multi-task learning performed much better than single-

person based learning and merged learning. Note that the

proposed multi-task learning method is a general technique,

and it can be easily applied to other tasks. As future work,

we plan to apply this method to other large-scale data mining

tasks.
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