Asynchronous Parallel Learning for
Neural Networks and Structured Models

with Dense Features
T

Xu SUN()

Peking University

xusun@pku.edu.cn

A Neural networks -> Good Performance
AFQQ/ UQQ/ OVWPa& !!
AVht xhgfh odehoolqgj/ sduvl q, df
A Neural networks -> Slow Training
A Large parameter space

A Dense feature D e N N

I
I
.

A Complex computation I I I I lH

A Faster Training ? -> Parallel Training

A Synchronous

A Asynchronous -> AsynGrad

Neural Networks

A Many kinds
A Feed Forward Neural Networks
X >‘ A logistic regression

A Convolutional Neural Networks

A Image processing

A Recurrent Neural Networks
AUQQ/ OVWP/ JUXae

A structured prediction

Recurrent Neural Network (RNN)

A ReCU I‘I‘ent neural n e'[WOl‘k (Elman, Cognitive Science 1990)

A Model time series
A Predict linear -chain structures

A Conditioned on all previous input

he = f(Uhi—1 + Way)

Uy = Softmaa:(W(S)ht)

T

-
i

Picture from Christopher Olah 4

> —(2)

)
I
A

b

RIS
(3

Long Short -term Memory (LSTM)

A LOﬂg ShOI"['term memory (Hochreiter and Schmidhuber 1997)

A A lasting linear memory
A Capture long distance dependency
A Three gates: input, forget and output gates

A Control modification to the memory

-

tanh|
0 i bt L“),.
sig |[sig] [tanh] [sig]
x(O KD
, —3 L

Sequence -to -Sequence Model

A Sequence to sequence neural Nnetwork (sutskeveretal, Nips 2014

A Encoder & Decoder

A The encoder information is stored ina fixed -length vector

W X Y Z <EOS>
[I | N N
(R 1 O I |
A B C <EOS> w X Y Z
| |
Encoder Decoder

A Popular for high -level task

A Machine Translation
A Summarization

A o

rge - Scale Structured Prediction

A Training large -scale neural networks is costly

A Numerous parameters
A Dense Feature

A Time-consuming

A For example

A A NMT model may take weeks

to train

A Days, even if with GPU clusters

A How to accelerate training speed?

A Parallel training

A Especially, asynchronous (lock -free) parallel training 7

Problem Analysis

A Basic operations in parallel training

[Parameters J [Parameters } [Parameters }
(Shared Memory) (Shared Memory) (Shared Memory)
Threads Threads Gradient
(CPU) (CPU) Computation

A Problem differs in

A Online vs: Mini -batch vs. Batch
A Synchronous parallel vs. Asynchronous parallel

A Dense feature model vs. Sparse feature model

Parallel Training

A Synchronous (locked) A Asynchronous (lock -free)
A Multiple threads A Multiple threads
A Only one can modify A Each one can modify
model parameters at the model parameters at the
same time same time
Parameters Parameters
(Shared Memory) (Shared Memory)
AN VANV AN AN ANV AN AN
| one at a time | | multiple at a time |
LUniyy guiidl
Threads Threads

(CPU) (CPU)

Model Types

A Sparse feature model A Dense feature model
A e.g. HMM, CRF, Perceptron, A e.g. RNN, LSTM,
PLOD®#®& Sequence-to-Vht xhqgf h
A features are sparse A features are dense
A less read & write time A more read & write time

feature space

sparse feature
deEl aee

dense feature
model 01051003 |07 e 021 1.0

10

Problem Analysis

A How threads interact with each other?

Sparse Dense

? ?

Sync.

Async
D
O,

11

Problem Analysis

A How threads interact with each other?

Sparse Dense

? ?

Sync.

Async
D
O,

12

Synchronous Online Parallel Training

A Correctness

No problem at all!

R 1. Simple case
G
—w—| R * Reading parameters from shared memory
Thread-1
G < Computing Gradients
W < W riting parameters to shared memory
Thread-2
(a) Simple case
[Parameters }
(Shared Memory)
A Current approach: DSGD a round -robin | @ﬁmﬁﬁlﬂm@@ |

A Langford et al, NIPS 2009

{ Threads }
A Stochastic parallel learning by locking memory o

13

Synchronous

A Correctness

Online Parallel Training

No problem at all!

R 1. Simple case
G
—w—| R * Reading parameters from shared memory
Thread-1
G < Computing Gradients
W < W riting parameters to shared memory
Thread-2
(a) Simple case
[Parameters }
(Shared Memory)

A Current approach:

A mini -batch

A Computing gradients in parallel

TT1TIn

based method { }
Threads

(CPU)

A such as: parallel matrix operations via GPU 14

Problem Analysis

A How threads interact with each other?

Sparse Dense

Sync.

Async
D
O,

15

Problem Analysis

A How threads interact with each other?

Sparse Dense

vV

? ?

Sync.

Async.

16

Problem Analysis

A How threads interact with each other?

Sparse Dense

Sync.

Async.
D

17

Asynchronous Online Parallel Training

A Asynchronous parallel learning IS very
popular for traditional

W
Thread-2

(a) Simple case

sparse |feature models

W

W | Thread-2
Thread-1

(b) Grad delay case

2. This case is called
Gradient Delay case

A More complicated, but
problem solved for sparse
feature models (Niu et al. NIPS
2011)

(Shared Memory)

I LT

[Threads }
(CPU)
18

Parameters }

Asynchronous Online Parallel Training

A Current approach: HogWild! and variants

A Multiple threads updating parameters at the same time

A For sparse feature models
P Problem also solved

A Advantage (for sparse feature
models)!

A Actual parallel training

A Fast training speed with no performance loss

R
R
6 R
w |_R . .
Parameters
reatt (Shared Memory)
G —
W
WA
W W Thread-2 W
Thread-2 Thread-1

Threads
(a) Simple case (b) Grad delay case (CPU)

19

Problem Analysis

A How threads interact with each other?

Sparse Dense

Sync.

Async.

20

Problem Analysis

A How threads interact with each other?

Sparse Dense

Sync.

Async.

21

Problem Analysis

A How threads interact with each other?

Sparse Dense
O
-
m
O
-
>
7p)
< v @

Asynchronous Online Parallel Learning

A 3. Even more difficult case: Gradient Error Case

A Happens for dense feature models, like neural networks

A Actions (R, G & W) are time -consuming LIIITT
A Read-overwrite and write -overwrite problems
A Not well studied before, how to deal with this
problem?
a
R -
R
G R R&G R&G
———| R
W
G Fite
Thread.1 G W }R—ovem
G — W-overwrite
W _J
Thread-1
W w Thread-2 W
Thread-2 Thread-1 Thread-2
(a) Simple case (b) Grad delay case (c) Grad error case

23

Problem Analysis

A How threads interact with each other?

Sparse Dense
O
-
m
O
-
>
7p)
< v @

Problem Analysis

A How threads interact with each other?

Sparse

Sync.

Async.

Dense

AsynGrad

AsynGrad
aims to
solve
gradient
error case

25

Problem Analysis

A How threads interact with each other?

Sparse Dense

Sync.

This is our
proposal

AsynGrad

Async.

26

Review of Gradient Error Case

A Gradient error has two aspects

A How many of the gradients are wrong?

A How wrong are they?

all correct some are wrong most are wrong
gradient
vectors
ot]
slightly
wrong o . .
L] L] L
very L] L] L 2
R

27

Experimental Observations

A Gradient error IS very comm
training of neural networks

on In asynchronous
In real -world tasks

R
R
G
R R&G R&G
w |_R c
G R-overwrite
Thread-1 |
G — W-overwrite
W _J
Thread-1
w w Thread-2 W
. Thread-1
Thread-2 “ Thread-2
(a) Simple case (b) Grad delay case (c) Grad error case
POS-Tag: Gradient Error Rate Chunking: Gradient Error Rate Weibo-WordSeg: Gradient Error Rate
100 100

s 3 g
2 2 2 96
& © @
5 o4 5 5 o4
iy] i

92 92 92

W 5 10 15 20 0 5 10 15 20 > 5 10 15

Number of iteration Number of iteration Number of iteration
— — — 4 5 8 T e B s) e 10) — | — — 4 5 6 T e § e) s 10 — — w— 4 5 6 T e B s) s 10

8

Experimental Observations

A Gradient error IS moderate In asynchronous training
of neural networks inreal -world tasks

G R R&G R&G
w|_R_
Thread-1 ¢ ¢ w }R"J"m’
G W }W—overw
Thread-1
W W | Thread-2 W
(a) Simple case (t&lay case (c) Grad error case
naive case practical case
gradient
vectors
correct
slightly
wrong

wrong

Our Theoretical Analysis

A Can training still converge with gradient errors?

Theorem 1 (AsynGrad convergence and convergence rate). With the conditions (4), (5), (6), (7), lete > 0

be a targd _ o _ limum). Let
T+ denote | EVen though there are gradient errors, training still

converges towards the optimum , when the gradient

(8)
where w | ETTOrS are bounded. b such that

s(w) = E;[s;(w)]. Let v be a learning rate as

ce — 27q
R ”

where we can set [3 as any value as far as 3 > 1. Let t be the number of updates as follows

Bgr?log (gag/€)

t =
c(ce — 27q)

(10)

where = means ceil-rounding of a real value to an integer, and ay is the initial distance such that ag =

||wo —w*||2. Then, after t updates of w, AsynGrad converges towards the optimum such that E[f (w;) —
f(w*)] < € as far as the gradient errors are bounded such that

bounded gradient errors

T< — “— (11)
2q 30

Our Theoretical Analysis

A Evenif mostof the gradients are

T -

A With their

errors bounded

, training still

.~

wrong

gradient
vectors

‘ ‘ correct

‘ ‘ slightly
wrong

wrong

31

AsynGrad

A An asynchronous parallel learning solution for fast training of
neural networks

A Asynchronous Parallel Learning with Gradient Error (AsynGrad)
A Algorithm

Algorithm 1 AsynGrad: Asynchronous Parallel Learning with Gradient Error

Input: model weights w, training set S of m samples

Run £ threads in parallel with share memory, and procedure of each thread is as follows:

repeat
Get a sample 2z uniformly at random from .S
Get thejupdate term 8, (w), which is computed as V f, (w) but usually contains error
Update w such that w < w — s, (w)

until Convergence

return w

X. Sun. Asynchronous Parallel Learning for Neural
Networks and Structured Models with Dense Features.
COLING 2016.

32

Experiments on _

Experiments show a high gradient error rate

POS-Tag: Gradient Error Rate

Chunking: Gradient Error Rate

5 10 15 20
Number of iteration
—3 4 5 6 T —

— — — —10

100 100
98
< S
)) 96
© ©
Y Y
5 94f 5 94
10 wm
92} 92!
90 90

5 10 15 20
Number of iteration
— 3 4 5 [T —

— —10

33

